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Abstract. We consider the roughness properties of NYSE (New York Stock Exchange) stock-price fluc-
tuations. The statistical properties of the data are relatively homogeneous within the same day but the
large jumps between different days prevent the extension of the analysis to large times. This leads to
intrinsic finite size effects which alter the apparent Hurst (H) exponent. We show, by analytical methods,
that finite size effects always lead to an enhancement of H. We then consider the effect of fat tails on
the analysis of the roughness and show that the finite size effects are strongly enhanced by the fat tails.
The non stationarity of the stock price dynamics also enhances the finite size effects which, in principle,
can become important even in the asymptotic regime. We then compute the Hurst exponent for a set of
stocks of the NYSE and argue that the interpretation of the value of H is highly ambiguous in view of the
above results. Finally we propose an alternative determination of the roughness in terms of the fluctuations
from moving averages with variable characteristic times. This permits to eliminate most of the previous
problems and to characterize the roughness in useful way. In particular this approach corresponds to the
automatic elimination of trends at any scale.

PACS. 89.75.-k Complex systems – 89.65.Gh Economics; econophysics, financial markets, business and
management – 89.65.-s Social and economic systems

1 Introduction

The dynamics and fluctuations of stock-prices is repre-
sented, at the simplest level, by a random walk which
guarantees for the basic property of an efficient market.
In the past years it has become clear that one faces a
rather subtle and complex form of random walk. Simple
correlations of price change are indeed zero at the short-
est time but many other features, often related to power
law behavior have been discovered [1]. Among the most
preeminent one may mention the power law distributions
of returns (“fat tails”) and the volatility clustering [2,3].
These properties, however, are far from exhaustive and
other approaches have been introduced in the attempt of
describing the subtle correlations of stock-price dynamics.

One of these methods is the attempt to characterize
the “roughness” of the dynamics which can provide addi-
tional information with respect to the fat tails and volatil-
ity. The scaling properties of the roughness can be defined
via the Hurst exponent H [4], through the so called R/S
analysis. We consider the roughness problem for high fre-

a e-mail: valentina.alfi@romal.infn.it

quency NYSE stock-prices. This means that we take into
account all the transactions which occur (tick by tick).

First we discuss the statistical properties of the data
set and show that finite size effects are unavoidable and
very important [5]. Then we show that fat tails and corre-
lations affect the value of the Hurst exponent in an impor-
tant way [6]. Finally we analyze the real stock-price fluc-
tuations and argue that the Hurst exponent alone cannot
properly characterize their roughness. To this purpose we
use a new method to study the roughness which is able to
automatically eliminate the trend problem. This is based
on the deviation from a suitable moving average and it
resolves various ambiguities of the Hurst’s R/S analysis.

The paper is organized in the following way:
In Section 2 we discuss the database for the high fre-

quency samples. This will lead to a crucial role of finite
size effects because the data are relatively homogeneous
within the same day but there is a large gap in price be-
tween the closing of one day and the opening of the next
day.

In Section 3 we discuss the general problem associated
to the determination of the roughness via the Hurst expo-
nent in view of the anisotropic scaling.
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Fig. 1. Behavior of the density of transactions within a day.
This concave behavior with a maximum fluctuation up to a
factor of two is a general feature for all stocks.

In Section 4 we consider the finite size effects on the
roughness exponent in random walks with an analytical
approach and then include also the possible effects of fat
tails and correlations with Monte Carlo simulations.

In Section 5 we present the roughness analysis for a
selection of NYSE stock-prices also as a function of time.

In Section 6 we critically analyze the scaling assump-
tion in relation to the roughness and consider new tools
to this purpose which eliminate the trends at all scales
automatically.

In Section 7 we discuss the results and present the
conclusions.

2 Database properties

We consider as database the price time series of all the
transactions of a selection of 20 NYSE stocks. These have
been selected to be representative and with intermediate
volatility. This corresponds to volumes of 105–106 stocks
exchanged per day. We consider 80 days from October
2004 to February 2005.

The time series we consider are by a sequential order
tick by tick. This is not identical to the price value as
a function of physical time but we have tested that the
results are rather insensitive to this choice.

The number of transactions per day ranges from 500 to
5000 implying a typical time interval between transactions
of a few seconds. The density of operations within a day is
characterized by a concave shape which is rather universal
as shown in Figure 1. This means that, with respect to the
physical time there are systematic density fluctuations up
to a factor of two with a minimum around the center. This
effect is obviously eliminated in our tick by tick time, in
which physical time is not considered and we have tested
that it is not relevant for the roughness properties.

A problem which is very important and rarely dis-
cussed in the literature, is the fact that the closing price
of a given day is usually very different than the opening
price of the next day. A typical behavior is illustrated in
Figure 2. and it shows that these jumps are serious prob-
lem in linking the data of one day to those of the next
day.

This means that the data are reasonably homogeneous
from the time scale of a few seconds to a few hours but
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Fig. 2. Night jumps between two days. This gap is very large,
typically of the order of the total daily fluctuation (see Tab. 1).
This poses a serious problem in the analysis of roughness be-
cause data are reasonably homogeneous only within a single
day. This leads to the importance of finite size effects in the
analysis.

Table 1. Properties of the night jumps with respect to the
daily fluctuations of various stocks. The data refer to the av-
erage values over 80 trading days. 〈|Pop − Pcl|〉: average of
absolute value of the gap between opening and closing price
for each day. 〈|∆|〉: average of the absolute value of the night
jumps. σ∆: variance of the absolute value of the night jumps.
σP : total daily variance of the price value. σδP : variance of the
price fluctuations between two transactions.

Stock 〈|Pop − Pcl|〉 〈|∆|〉 σ∆ σP σδP

AH 0.73494 0.36950 0.59100 0.28539 0.02152
AVO 0.47561 0.18862 0.56508 0.23161 0.01698
BA 0.41926 0.21437 0.42131 0.19530 0.01056
BRO 0.40877 0.15750 0.37375 0.19091 0.01607
CAI 0.81284 0.39238 0.86836 0.31750 0.02323
DRI 0.30753 0.09850 0.23245 0.11490 0.01065
GE 0.22691 0.11688 0.17154 0.10304 0.00652
GLK 0.28272 0.10212 0.23420 0.12998 0.01054
GM 0.35593 0.15725 0.25058 0.14597 0.00833
JWN 0.44531 0.23325 0.45625 0.20444 0.01249
KSS 0.57759 0.29628 0.48844 0.22275 0.01355
MCD 0.24457 0.13850 0.20268 0.10288 0.00758
MHS 0.43605 0.20437 0.40161 0.17267 0.01126
MIK 0.34531 0.62375 3.12751 0.14479 0.01320
MLS 0.55309 0.17287 0.27860 0.21948 0.02045
PG 0.40321 0.24462 0.46493 0.17056 0.00906
TXI 0.79704 0.22362 0.62309 0.33799 0.02964
UDI 0.44679 0.22375 0.80100 0.19003 0.01469
VNO 0.65864 0.21950 0.36921 0.26285 0.02443
WGR 0.40877 0.16937 0.36687 0.17846 0.01681

going to longer times can be rather arbitrary due to these
large night jumps.

In Table 1 we present a detailed analysis of this phe-
nomenon. For each stock we have in the first column the
average over 80 days of the absolute value of the gap be-
tween opening and closing price, (〈|Pop −Pcl|〉), indicated
in US $. In the second column we indicate with 〈|∆|〉 the



V. Alfi et al.: Roughness and finite size effect in the NYSE stock-price fluctuations 137

average of the absolute values of the night jumps. One
can see immediately that they are of the same order of
magnitude. In the third column σ∆ indicates the variance
of the night jumps. These values are really very large and
clearly show that there is a strong discontinuity from the
closing price to the next day opening. In the fourth column
we show the variance of price fluctuation within one day
averaged over the 80 days (average single day volatility).
Finally in the fifth column we show the variance of the
price fluctuations between two transactions. One can see
therefore that the night jumps are more than one order of
magnitude larger than the typical price change between
two transactions. This leads to a very serious problem if
one tries to extend these time series beyond the time scale
of a single day. In fact, if one simply continues to the next
day, one has anomalous jumps for the night which cannot
be treated as a standard price change. An alternative pos-
sibility could be to artificially eliminate the night jumps
and rescale the price correspondingly. This would produce
a homogeneous data set which, however, does not corre-
spond to the original data.

This discussion clarifies that there is a fundamental
problem in extending the data beyond a single day. Since
the transactions within each day range from 500 to 5000,
this leads to an important problem of finite size effects in
relation to the roughness exponent. In the next section we
are going to discuss these finite size effects and show that
they are strongly amplified by the fat tail phenomenon.

3 Roughness and Hurst exponent

The importance of a characterization of the roughness
properties is clearly illustrated in Figure 3. Here we see
the behavior of the price of two stocks which are clearly
very different with respect to their roughness properties.
The visual difference in roughness, however, does not in-
fluence the day volatility σ, which is almost identical. The
idea is therefore to add new concepts to characterize their
different behavior. We are going to see in the end that
even the Hurst exponent is not really optimal to this pur-
pose and the challenge of this new characterization should
proceed along novel lines which we outline at the end of
the paper.

We first consider the problem of the characterization
of the roughness in the Hurst exponent including the fi-
nite size effects. The roughness exponent characterizes the
scaling of the price fluctuation as a function of the size of
the interval considered.

Originally this exponent was introduced for the time
series of the levels of the floods of the Nile river. He
invented a new statistical method, which he called the
rescaled range analysis (R/S analysis). The basic idea was
to construct a profile from these series and analyze its
roughness. This implied some peculiar construction which
we can avoid because we have the profile directly.

The characterization of the roughness is complicated
by the fact that it corresponds to a problem of anisotropic
scaling [11] and it can lead to confusing results in its prac-
tical applications [12]. An example of these difficulties is
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Fig. 3. Examples of the day price dynamics of two stocks
whose behavior, with respect to the roughness, appears very
different on a visual inspection. The two stocks have a very
similar variance (σ) for the price distribution. Surprisingly, also
the Hurst exponent will be similar for the two cases.

illustrated by the fact that for the growth of a rough pro-
file the Renormalization Group procedure has to be im-
plemented in a rather sophisticated and unusual way [13].
An illustration of this problem is also given by the fact
that the value of the fractal dimension of a rough surface
is crucially dependent on the type of procedure one con-
siders [13]. The usual approach is to take the limit of small
length scales for which the relation between the dimension
of the profile, D, and the Hurst exponent is [11]:

D = 2 − H. (1)

However, if one consider the limit of large scales (not rig-
orous mathematically but often used in physics), one can
get D = 1 for the Brownian profiles which does not corre-
spond any more to equation (1).

In the data analysis one is forced to consider a finite in-
terval and necessarily the two tendencies get mixed. Even
considering equation (1) one can have various ambiguities.
In fact a large Hurst exponent corresponds to small value
of the fractal dimension which may appear strange.

Various problems contribute to this possible confu-
sion. The first is how one looks at a scaling law for an
anisotropic problem. The scaling for roughness links the
vertical fluctuation ∆h as a function of the interval con-
sidered:

∆h(∆L) ∼ ∆LH . (2)
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In a physical perspective one has typically a lower cutoff
and looks at the behavior for large values of ∆L. Since for
a random walk (Brownian profile) one has H = 1/2 one
could say that if H > 1/2 this corresponds to a case which
is more rough than the Brownian profile. However this is
in apparent contradiction with equation (1) because the
value of D, if H > 1/2, results smaller than the Brownian
value (D = 3/2). This is because equation (1) is derived
in the limit ∆L → 0 in the spirit of the coverage approach
to derive the fractal dimension.

A similar confusion can be given by the existence of
trends in the dynamics of the system. Consider for ex-
ample a straight line behavior for which ∆h ∼ ∆L. In
this case one would have H = 1 and D = 1, namely the
system is not rough in the ∆L → 0 perspective but it is
very rough in the ∆L → ∞ view. In such a situation one
should realize that a trend is present and that the system
is smooth. However, this distinction is not possible with
the Hurst’s R/S analysis.

Actually in the real data one has an upper and a lower
limit for ∆L, due to the intrinsic statistical limitation of
the sample. The exponent H is then obtained by a fit in
a certain range of scales and all the above problems are
difficult to sort out.

4 Roughness in a finite size random walk

In this section we discuss the role of finite size effects in
the determination of the Hurst exponent. We start by de-
riving some analytical results for a finite size random walk.
Consider the function:

R(n) = 〈 max
k=(ln+1),(ln+n)

(xk) − min
k=(ln+1),(ln+n)

(xk)〉l (3)

where l = 1, 2, ..., N
n and {x1, x2, ..., xN} are N record in

time of a variable X . The function R(n) describes the
expectation value of the difference between maximum and
minimum over an interval of size n. R(n), for many records
in time is very well described by the following empirical
relation:

R(n) ∝ nH (4)

where H is the Hurst exponent. Now we want to check
which is the effect of the finite size in estimating the Hurst
exponent. To perform this analysis we consider a random
walk and try to make an analytical calculation of the func-
tion R(n).

Suppose that {δx1, δx2, ...} are independent random
variables, each taking the value 1 with probability p and
–1 otherwise. Consider the sums:

xn =
n∑

i=1

δxi (5)

then the sequence x = {xi: i ≥ 0} is a simple random
walk starting at the origin. Now we want to compute the
expectation value of the maximum and the minimum of

the walk after n steps. In order to do that consider the
Spitzer’s identity which relates E(Mn) to E (x+

n ) in the
following way [14]:

log
( ∞∑

n=0

tn E(sMn)
)

=
∞∑

n=1

1
n

tn E (sx+
n ) (6)

where Mn = max {xi: 0 ≥ i ≥ n} is the maximum of
the walk up to time n, x+

n = max {0, xn}, s and t are
two auxiliary variables which absolute values are smaller
than one and E is the expectation value. Considering the
exponential of the Spitzer’s identity and performing the
n-th derivative we obtain:

E (sMn) =
1
n

n∑

k=1

E(sx+
n )

(n − k)!
f (n−k)

∣∣
0

where

f(t) = exp(g(t)) (7)

g(t) =
∞∑

n=1

1
n

tn E (sx+
n )

and f (n)
∣∣
0

is the n-th derivative of f(t) calculated in t = 0.
For the derivative one can write a recursive expression:

f (n)
∣∣
0

=
n∑

k=1

(n − 1)!
(n − k)!

E (sx+
k )f (n−k)

∣∣
0
. (8)

The relation between E(Mn) and E(sMn) for a symmet-
rical probability density function can be obtained by a
straightforward calculation [15].

E(sx+
n ) = 1 +

1
2

E(|xn|) ln(s) + O(ln(s))2.

By substituting this expression in that of E(sMn) and tak-
ing the limit for s → 1:

E(Mn) = lim
s→1

E(sMn) − 1
ln(s)

. (9)

The basic final relation is therefore [15]

E(Mn) =
n∑

i=1

E(|xi|)
2i

. (10)

From this expression it is possible to derive explicitly the
expected value of the maximum as a function of the num-
ber of steps of the walk. By considering that a similar
expression holds also for the minimum, one can directly
compute the effective Hurst exponent for random walk of
any size. The specific example of Gaussian increments or
±1 increments are considered in detail in reference [15].
Replacing the results obtained for E(Mn) in the expres-
sion of R(n) we can plot the average span as a function
of n and execute a fit to estimate the value of H . Execut-
ing a fit in the region [10, 1000] we obtain a value of the
slope that is grater then the asymptotic one. In Figure 4
we shows the result for the effective Hurst exponent that
we have obtained performing the fit in the region [10, n]
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Fig. 4. This plot shows the trend obtained fitting the curve
R(n) for different values of the size n. The results shows a
systematic overestimate of Hurst exponent for small size, due
to finite size effects. This is a general result and it shows that
finite size effects always enhance the apparent Hurst exponent.
This enhancement can be understood by considering that, in
some sense, a single step would correspond to H = 1, so the
asymptotic value H = 1/2 is approached from above.

for the random walk with two identical steps (±1). One
can see that finite size effects are very important and a
seriously affect the apparent value of H .

The random walk models considered until now have
a distribution of individual steps corresponding to a
Gaussian distribution or to two identical steps. Real price
differences however, are characterized by a distribution of
sizes which strongly deviates from these (“fat tails“). For
example, if we consider the histogram of the quantity:

S(t) = lnP (t + 1) − ln P (t), (11)

we find a distributions with large tails, as shown in Fig-
ure 5.

To analyze the effect of the fat tails in the evaluation
of the Hurst exponent, we can consider a model of random
walk with increments that take the values δx = ±ε with
probability 0.45 and δx = ±10ε with probability 0.05. The
histogram in Figure 5 represent such a model. We have
performed a numerical analysis of the Hurst exponent for a
random walk with fat tails to study their role on the finite
size effects. To this purpose we have generated 1000 ran-
dom walks of this kind of size n with n = [100 : 5000] and
we have calculated the function R(n) for each sample. Af-
ter calculating the average of R(n), we have considered the
plot R(n) as a function of n and the evaluation of H(n)
has been performed in the region [ n

100 ; n
10 ]. Figure 6 shows

the result obtained, a comparison with a normal and a
correlated random walk and real data is also shown.

The fact that fat tails and correlations enhance the fi-
nite size effects is easy to understand. In case of correlated
random walks the effective number of independent steps
is strongly reduced. In the case of fat tails instead only
the tails give the main contribution to the profile.
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Fig. 5. Probability function for high frequency price differ-
ences of the BRO stock during a day. The solid line is the
Gaussian fit of the data. The boxes represent a model to esti-
mate the effect of the tails for the random walk. The proba-
bility is estimate by an histogram given by a value ±ε which
has 0.45 of probability and a tail ±10ε with probability 0.05.
In this plot ε = 0.2.
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Fig. 6. The value of H(n) is shown for three different random
walk models (normal, correlated and with fat tails) and for real
data. Finite size effect already present in the normal random
walk are amplified by the presence of fat tails and correlations.
In the x-axis is plotted the effective size, that is n

10
. The values

are averaged over 1000 realizations.

This findings could also have implications for very long
times if combined with the non stationarity of the price
dynamics. It should be considered the possibility that even
the asymptotic regime is still altered by these effects. This
could suggest a different interpretation of the deviation of
H from the value 1/2, which is usually proposed in terms
of long range correlations [10].

Figure 6 shows the inefficiency of the Hurst exponent’s
approach to the study of the roughness for systems with
a small size. The results are clearly affected by the effect
of a finite size and the interpretation of H > 1/2 as a long
range correlation could be misleading.
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Fig. 7. Analysis in terms of the Hurst exponent of the two
stocks shown in Figure 3. The case (a) refers to the stock which
appears smooth, while (b) is the other one. One can see that
the value of H is very similar despite the apparent differences
between the two behavior (Fig. 3).

5 Analysis of NYSE stocks

First we consider the Hurst’s R/S analysis for the two
stocks plotted in Figure 3 and the relative results are
shown in Figure 7.

The values of the two exponents H are very similar in
spite of the large difference of the two stocks in their ap-
parent roughness properties. This shows that the exponent
H is not suitable to characterize the different roughness
properties of the two stocks.

We then consider the entire series of 20 stocks and
the results are reported in Table 2. Here H represents the
daily value averaged over 80 days. Then Hmax and Hmin

are the maximum and the minimum values respectively, σ
is the variance averaged over the 80 values and 〈N〉 is the
average number of transactions per day. In Figure 8 we
report the time behavior of H(t) for the 80 days for the
two stocks of Figure 3. With respect to previous analysis
of the time dependence of H(t) [9], we can observe that
the daily variability of single stocks is much larger than

Table 2. Hurst exponent for 20 NYSE stocks. H is the average
daily value over the 80 days. Hmax and Hmin are the maxi-
mum and the minimum and σ the variance. 〈N〉 is the average
number of transactions per day.

Stock H Hmax Hmin σ 〈N〉
AH 0.599 0.732 0.489 0.0215 1535.77
AVO 0.615 0.785 0.501 0.0170 1296.71
BA 0.573 0.694 0.478 0.0106 3323.37
BRO 0.662 0.792 0.557 0.0161 853.91
CAI 0.641 0.751 0.478 0.0232 1052.58
DRI 0.575 0.699 0.445 0.0106 1446.65
GE 0.526 0.653 0.406 0.0065 5598.83
GLK 0.627 0.780 0.484 0.0105 1114.01
GM 0.574 0.677 0.462 0.0083 3405.84
JWN 0.579 0.738 0.457 0.0125 2025.67
KSS 0.570 0.686 0.438 0.0135 2789.09
MCD 0.559 0.691 0.417 0.0076 3480.63
MHS 0.612 0.750 0.460 0.0113 1792.51
MIK 0.591 0.752 0.456 0.0132 1377.84
MLS 0.635 0.914 0.496 0.0204 759.27
PG 0.551 0.662 0.456 0.0091 4135.80
TXI 0.636 0.776 0.473 0.0296 733.68
UDI 0.679 0.781 0.524 0.0147 774.25
VNO 0.622 0.777 0.506 0.0244 883.78
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Fig. 8. Time dependence of the Hurst exponent H(t) for the
two stocks shown in Figure 3.

that of global indices over long times. In addition also the
average is appreciably larger.

A general result is that the value of H is systematically
larger than 1/2. The usual interpretation would be to con-
clude that long range correlations are present [10]. How-
ever, in view of our previous discussion we would instead
propose that this deviation from 1/2 is precisely due to
finite size effects, combined with the fat tail phenomenon.
A further support to this interpretation is that if we built
a long time series by eliminating the night jumps, one ob-
serves a convergency towards the value 1/2. Also one may
note that stocks with a relatively large number of transac-
tions per day (〈N〉), like for example GE stock, are much
closer to the random walk value H = 1/2.

The fact that apparently different profiles with respect
to the roughness lead to value of H which are very similar
is due to a variety of reasons. The overall enhancement
with respect to the standard value 1/2 is, in our opinion,
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Fig. 9. Gq(τ ) as a function of τ in a log-log scale for the two
test-stock ((a) is the smooth and (b) the rough one). In both
(a) and (b), from bottom to top q = 1, 2, 3, 4, 5, 6.

mostly due to the finite size effects phenomenon. How-
ever, this does not explain why two profiles which appear
very different, like those in Figure 3, finally, lead to very
similar values of H . This is probably due to the fact that
the Hurst’s R/S analysis tends to mix the role of trends
with fluctuations and in the next section we are going to
propose a different method to resolve this problem.

To complete our analysis, we consider the generalized
Hurst exponent in the spirit of reference [16]. To this pur-
pose we analyze a q-th order price difference correlation
function defined by:

Gq(τ) = 〈|P (t) − P (t + τ)|q〉 1
q . (12)

The generalized Hurst exponent Hq can be defined from
the scaling behavior of Gq(τ):

Gq(τ) ∼ τHq . (13)

For a simple random walk Hq = H = 1/2 independently
of q. We have calculate the function Gq(τ) for the two
test-stocks.

The results are shown in Figure 9 and show that Hq

is not a constant but strongly depends on q. This result
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Fig. 10. Example of price fluctuations and the corresponding
moving average. In our case we consider a symmetrized moving
average defined as the average of the price over a symmetric
interval of total size τ .

provides an evidence that the characteristics of the pro-
file are dominated by the large jumps due to the fat tail
properties that are present in the plotted data.

6 New approach to roughness as fluctuation
from moving average

In this section we consider a new method to characterize
the roughness. The basic idea is to be able to perform
an automatic detrendization of the price signal. This can
be achieved by the difference between the price variable
and its moving average defined in an optimal way. At each
transaction point ti we define the moving average of the
price P (ti), with a characteristic time τ , as:

Pτ (ti) =
1

Nτ

∑

j

P (tj) (14)

where Nτ are the number of transactions in the time in-
terval [−τ/2 : τ/2]. This function corresponds to the sym-
metric average over an interval of size Nτ around ti.

One can then consider the maximum deviation of P (ti)
from Pτ (ti) over an interval of a certain size, in our case
we consider a single day:

Rτ = max
i

|P (ti) − Pτ (ti)|. (15)

This may appear similar to the standard definition of
roughness which gives the absolute fluctuation in a time
interval τ . Instead the use of Rτ corresponds to an auto-
matic detrendization which appears more appropriate to
study the roughness. Our approach is similar to the one
of reference [17], but with the difference that we use a
symmetrized definition of the moving average while refer-
ence [17] defines the moving average only with respect to
a previous time interval.
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Fig. 11. (a) Fluctuations over intervals of different size (τ )
defined by the differences between maximum and minimum
values over intervals of size τ . These curves were used in the
previous sections to compute the Hurst exponent in the stan-
dard way. The two curves refer to the two stock of Figure 3.
One can observe that the slope is similar for the two cases and,
at relatively large scale (τ ), even the amplitudes become rather
similar. (b) In this case the amplitudes are defined by the fluc-
tuations from the moving averages as given by equation (15).
In this case there is a marked difference in slope and even more
in amplitude. This example clarifies that this new definition of
roughness can be more useful to classify the stock dynamics.

In Figure 11 we show the values of Rτ for the two
stocks shown in Figure 3 and, for comparison, the same
stocks analyzed with the R/S analysis. One can see that
the fluctuations from the moving average are more ap-
propriate to describe the difference between these stocks
which cannot be detected with the standard Hurst’s R/S
analysis.

7 Discussion and conclusions

We have considered the roughness properties as a new el-
ement to characterize the high frequency stock-price fluc-
tuations. The data considered include all transactions and
show a large night jump between one day and the next.
For this reasons the dataset are statistically homogeneous
only within each day. This leads to a serious problem of
finite size effects which we have analyzed by using various

random walk models as examples. We have computed the
effective Hurst exponent as a function of the size of the
system. The basic result is that the finite size effects lead
to a systematic enhancement of the effective Hurst expo-
nent and this tendency is amplified by the inclusion of fat
tails and eventual correlations.

An analysis of real stock-price behavior leads to the
conclusion that most of the deviations from the random
walk value (H = 1/2) are indeed due to finite size ef-
fects. Considering the importance of non-stationarity phe-
nomenon one may conjecture that the finite size effects
could be important even for long series of data.

Concerning the roughness analysis we conclude that
the standard Hurst’s R/S analysis is not very sensitive
in order to characterize the various stock-price behaviors.
We propose a different roughness analysis based on the
fluctuations from a symmetrized moving average. This has
the advantage of an automatic detrendization of the signal
without any ad hoc modification of the original data. This
new method appears much more useful than the standard
one in order to characterize the fluctuations behavior of
different stock as shown clearly by the analysis of the two
cases in Figure 3.
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